FTMW spectroscopy of sulfur bearing free radicals, HCSC and CH₃SS #### Yasuki Endo¹ 1) Department of Applied Chemistry, National Chiao Tung University Two new sulfur bearing free radicals, HCSC and CH₃SS, were observed in a discharged plasma containing CH₃SH diluted in Ar, using a Balle–Flygare type Fourier transform microwave spectrometer together with a MW–MW double resonance setup. The HCSC radical is a high energy isomer of well known free radical, HCCS, about 100 kcal/mol higher in energy. Fairly strong lines with fine and hyperfine splittings were observed slightly below 16 GHz, which were assigned to N=1-0, with the $^2\Sigma$ pattern indicating that this radical is bent, while HCCS is linear. The observation was extended to transitions with N=3-2 using double resonance. So far only $K_3=0$ transitions were observed. Although the signals of HCSC were strong with the present precursor, those of HCCS were very weak. In addition to the lines of HCSC, lines with very complicated splittings were observed extending in the region 16 GHz to 18 GHz, which were finally assigned to transitions of CH_3SS . The CH_3SS radical has a bent CSS structure with internal rotation of the methyl top. Thus, this species consists of a series of open shell radicals, CH_3OO , CH_3SO , and CH_3SS , where FTMW spectra have been observed for the former two species (K. Kato et al., unpublished). A number of lines have been observed with Nup to 4 with K_3 =0 and 1, for a- and b-type transitions. Splittings due the spin-rotation interaction, the proton hyperfine interaction, and the A/Esplittings due to internal rotation of the metyl top have been observed for this species, which were analyzed by the Hamiltonian for open shell species with internal rotation. The present data together with those of CH_3OO and CH_3SO may provide invaluable data for deeper understanding of the energy levels of open shell species with internal rotation, which have not been studied well so far. ### Millimeter-wave spectroscopy of the HDCCH radical ### Keiichi Tanaka¹, Masato Hayashi¹, H Matsubayashi¹, Kensuke Harada¹ 1) Kyushu University Faculty of Sciences Department of Chemisty The vinyl radical, H_2 CCH, has a proton tunneling motion of α -proton governed by a double minimum potential with barrier height of 1580 cm⁻¹[1]. The ground state splits into a doublet (0⁺ and 0⁻) and the proton tunneling transitions between the 0⁺ and 0⁻ levels have been observed by MMW spectroscopy[1, 2]. If one of the b-proton is deuterated, the effective 1–D potential for the a-proton bending motion becomes to be asymetric due to the zero point vibrations of b-deuteron. The proton tunneling is hindered and the b-type rotational transitions of ΔK_a = ±1 will be observed within the cis- and trans-tautomers instead of the tunneling transition, where cis-HDCCH has an unpaired electron on the same side of deuterium with respect to the C=C double bond, while trans-HDCCH on the opposite side. In the present study, the HDCCH radical produced by the 193 nm excimer laser photolysis of HDCCHCl have been observed by MMW spectroscopy combined with a pulsed supersonic jet technique. The b-type rotational transitions of $N_{Ka,Kc} = 1_{11} - 0_{00}$, $2_{12} - 1_{01}$, $1_{10} - 1_{01}$, and $2_{11} - 2_{02}$ as well as the α -type transitions of $2_{02} - 1_{01}$ and $3_{03} - 2_{02}$ were observed for one tautomer in the frequency region of 100 - 260 GHz. Observed A_0 rotational constant, 183.3340 GHz, is close to that for cis– HDCCH (181.3 GHz) rather than that for trans–HDCCH (165.8 GHz) given by a CCSD(T)/aVTZ level calculation. The γ angle, between the principal axes of the observed magnetic dipolar interaction and the molecule–fixed axes, was calculated to be 29.3(26)° confirming the observed HDCCH radical is the cis–HDCCH (γ =28.9°) but not the trans–(γ =37.6°) form. Observed Fermi contact interaction constants for the b–proton (a_F =176.45MHz) and b–deuteron (a_F =16.66MHz) are also consistent with the estimated values (184.7 and 17.0 MHz) for cis–HDCCH from the hyperfine constants obtained by the ESR study in the Ar matrix [3]. The rotational spectra of the trans–HDCCH, however, have not been observed in supersonic jet. The zero point energy gap Δ_{tc0} between the trans– and cis–tautomers estimated to be 33 cm⁻¹ by the ab initio calculation is large enough only the cis–HDCCH tautomer is populated in the supersonic jet condition ($T\approx$ 15 K). ^[1] JCP, 120, 3604 (2004). [2] Mol. Phys., 108, 2289 (2010). [3] JACS, 94, 5950 (1972). ## Accurate rotational fingerprints of radioactive radicals by mass-independent studies on AlO, TiO, and FeO ## <u>Alexander Breier</u>¹, Björn Waßmuth¹, Thomas Büchling¹, Guido Fuchs¹, Jürgen Gauss², Thomas Giesen¹ - 1) Institut für Physik, Universität Kassel - 2) Institut für Physikalische Chemie, Universität Mainz Astrophysical observation of radioactive isotopes, like 26 Al, 44 Ti, or 60 Fe, provide insight into the nucleosynthesis processes of stellar cores[1]. The detection of characteristic–photons which are released during radioactive decay is used to map their spatial distribution on large scale[2]. In general, the assignment to certain stellar objects fails due to limited sensitivity, exceptions are the nearby supernovae remnants Cas A[3] and SN1987A[4] for which the radioactive nucleus 44 Ti was detected. An alternative approach to detect radioactive isotopes is to observe abundant molecules containing radioactive isotopes. This enables spectroscopic observation of rotational transitions by radio-telescope facilities, like *ALMA*. In the environment of stellar objects, the molecular condensation starts with simple diatomic particles containing oxides of refractory elements. The astrophysical detection of diatomic radioactive molecules requires highly accurate rotational transition frequencies, which can be obtained from laboratory measurements of stable isotopologues and by applying the Dunham approach[5] to obtain scaled frequencies of radioactive isotopologues. In this work, systematic studies are presented for ²⁶AlO, ⁴⁴TiO, and ⁶⁰FeO, as most promising stellar tracers of nucleosynthesis, based on high–resolution measurements on the rotational transitions of their abundant stable isotopologues (²⁷Al, ^{46–50}Ti, ^{54;56–58}Fe,). Experiments were performed when a solid target (Al, Ti, Fe) is evaporated by a pulsed laser into an oxygen–rich buffer gas to form simple metal oxides. Adiabatically planar expansion of the gas jet into a vacuum chamber cools the gas to a few tens of Kelvin and subsequently, Doppler–free rotational absorption spectra are recorded in the frequency range up to 400 GHz. A global data analysis, which also includes results from the literature, reveals the molecular structure beyond the Born-Oppenheimer (BO) limit, resulting in experimentally derived BO correction coefficients of these metal oxides for the first time. Based on this analysis, the rotational transitions of the radioactive molecules are determined with high accuracy at the sub-MHz level, which enables their unambiguous identification in stellar environments. ^[1] C. Tur, A. Heger, S. M. Austin, Astrophys. J., 2010, 718, 357 ^[2] R. Diehl et al., Nature, 2006, 439, 45 ^[3] B. W. Grefenstette et al., Nature, 2014, 506, 339 ^[4] S. E. Boggs et al., Science, 2015, 348, 670 ^[5] J. L. Dunham, Phys. Rev., 1932, 41, 721 ## Accurate sub-millimeter rest-frequencies for HCCO and DCCO radicals ## <u>Johanna Chantzos</u>¹, Silvia Spezzano¹, Paola Caselli¹, Luca Bizzocchi¹, Christian Endres¹. Valerio Lattanzi¹ 1) Max Planck Institut for extraterrestrial Physics The ketenyl radical, HCCO, has been one missing link in interstellar oxygen-bearing chemistry, since it has been detected in only two starless cores so far. Its measured abundance is three orders of magnitude higher than predicted, meaning that there is one powerful formation mechanism still unknown. Moreover, its deuterated counterpart, DCCO, has never been identified in the ISM. HCCO and DCCO still lack of precise spectroscopic investigation although they exhibit a significant astrophysical relevance. The present work has expanded the study of the ground–state pure rotational spectra of HCCO and DCCO into the sub–millimeter region. The spectra acquisition was done with a frequency–modulation absorption spectrometer between 170 and 750 GHz. The radicals were produced in a low–density plasma by applying a negative glow discharge. For each isotopologue we were able to detect and assign more than 100 rotational lines. The new measured lines have substantially increased the previous data set allowing the precise determination of high order rotational and centrifugal distortion parameters. In our analysis we take into account the Renner–Teller interaction between the ground state and a low lying excited state, enabling the prediction and assignment of up to $K_a=4$ rotational transitions. The new set of spectroscopic parameters provide highly accurate, millimeter rest–frequencies of HCCO and DCCO for future astronomical observations. These results are very promising for a DCCO detection toward a starless core. # Terahertz spectroscopy of isotopologues of amidogen radical ## <u>Mattia Melosso</u>¹, Luca Dore¹, Claudio Degli Esposti¹, Filippo Tamassia², Elisabetta Canè². Luca Bizzocchi³ - 1) Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Francesco Selmi 2, I–40126, Bologna (Italy) - 2) Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, I–40136, Bologna (Italy) - 3) Center for Astrochemical Studies, Max–Planck–Institut für extraterrestrische Physik, Gießenbachstr. 1, D–85748 Garching bei München (Germany) Amidogen is an asimmetric-top free radical that belongs to the nitrogen-hydrides family and it plays an important role as intermediate in the synthesis of interstellar ammonia. The main isotopologue NH_2 and its ^{15}N -substituted variant have already been detected in the space, while no astronomical observations of the deuterated species of amidogen have been reported to date. In the last year, we focused our research activity on the study of the rotational spectrum of several deuterated isotopologues of amidogen radical, namely NHD, ND₂, ¹⁵NHD, and ¹⁵ND₂. For the two former species, the measurements of the ground state spectrum was extended to the THz region and the newly recorded transitions were analyzed together with the literature data. On the other hand, no laboratory detection for ^{15}NHD and $^{15}ND_2$ were reported so far and their pure rotational transitions have been observed for the first time from millimeter–wavelenght to THz frequencies. The recorded spectra show a fine–structure due to the electronic spin (S = $^{1}/_{2}$) that couples with the rotational angular momentum (J = N + S) and a hyperfine–structure due to the nuclear spins I_{H} , I_{15N} = $^{1}/_{2}$ I_{D} , I_{N} = 1. As example, a record of one fine–component of the 1_{11} – 0_{00} transition for two isotopologues is reported in Fig. 1. The differences between the spectra have to be ascribed to two factors: (i) the magnetic hyperfine–constants whose value varies from isotope to isotope and (ii) the appropriate symmetry combinations of rotational and nuclear wavefunctions. Indeed, since deuterium is a boson, the total molecular wavefunction must be symmetric upon the exchange of two identical nuclei only for the symmetric species ND₂ and ¹⁵ND₂. # Accurate rotational frequencies of deuterated Ammonium ions (d₁–d₃) measured in a cryogenic ion trap ### José Luis Doménech¹, Stephan Schlemmer², Oskar Asvany² - 1) Instituto de Estructura de la Materia CSIC, Serrano 123, 28006 Madrid, Spain - 2) I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany Two of the most abundant nitrogen-bearing molecules in the interstellar medium are N₂ and NH₃. Their protonated ions NH₂ (diazenylium) and NH₄ (ammonium) can provide critical information on interstellar chemistry. While N₂H² has been observed in many different sources, and it is, in fact, used as a proxy for N₂, NH₄⁺ being non-polar, cannot be observed through its rotational transitions. Nevertheless, it is predicted to be very abundant, since the proton affinity of NH₃ is very high, and it remains stable against collisions with the abundant H₂. However, deuterated variants of NH₄* (d₁-d₃) do possess small permanent dipole moments, and could be detected via rotational transitions. In fact, NH₃D⁺ has been detected in space in Orion IRc2 and in the cold core B1-bS through its transition $J_K=1_0-0_0[1]$. At the time of its detection, there were no laboratory data on the rotational spectroscopy of NH₃D* and the rest frequency was derived from an analysis of the high resolution IR spectrum of the v_4 band [2]. The frequency was confirmed later by an accurate direct measurement in the mm-wave in a cryogenic ion trap in the Cologne laboratories [3]. In order to provide accurate rest frequencies for the other polar isotopologues, experiments have been performed in a cryogenically cooled ion trap using the state-dependent attachment of He atoms to ions as an action spectroscopy technique. Improved frequencies for NH₂D⁺ as well as first direct measurements for NH₂D₂⁺ and NHD₃⁺ (guided by recent work by the group of D. Nesbitt [4]) have been obtained. ^[1] Cernicharo et al. 2013 ApJL 771, L10 ^[2] Doménech et al. 2013 ApJL 771, L11 ^[3] Stoffels et al. 2016 A&A 56, 1 ^[4] Chang et al. 2018 JCP 148, 014304